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A Generalized Higher Order Finite-Difference
Time-Domain Method and Its Application in
Guided-Wave Problems

Zhenhai Shao, Zhongxiang Shen, Member, |EEE, Qiuyang He, and Guowel Wei

Abstract—In this paper, a (2M,4) scheme of the finite-dif-
ference time-domain (FDTD) method is proposed, in which the
time differential is of the fourth order and the spatial differential
using thediscretesingular convolution isof order 2M . Compared
with the standard FDTD and the scheme of (4, 4), the scheme
of (2M,4) has much higher accuracy. By choosing a suitable
M > 2,the (2M, 4) scheme can arrive at the highest accuracy.
In addition, an improved approximation of the symplectic inte-
grator propagator is presented for the time differential. On one
hand, it can directly simulate unlimited conducting structures
without the air layer between the perfectly matched layer and
inner structure; on the other hand, it needs only a quarter of the
memory space required by the Runge—Kutta time scheme and
requires onethird of the meshesin every direction of the standard
FDTD method. By choosing suitable meshes and bandwidth
M, our scheme not only retains higher accuracy but also saves
memory space and CPU time. Numerical examples are provided
to show the high accuracy and effectiveness of proposed scheme.

Index Terms—Discrete singular convolution (DSC), finite
difference time domain (FDTD), Lagrange-delta kernd,
symplectic integrator propagator.

I. INTRODUCTION

HE finite-difference time-domain (FDTD) [1] method is

a full-wave approach to the analysis of various elec-
tromagnetic problems, such as integrated transmission lines,
discontinuities, scattering by intricate objects, and radiation
from antennas. Although the FDTD method can analyze var-
ious electromagnetic problems, its accuracy is lower than in-
tegra methods. It is desirable to find a method that can not
only retain the flexibility of the FDTD, but aso achieve the
higher accuracy of integral methods. During the past few years,
many researchers have proposed a number of techniques to
improve its accuracy. The scheme of (4, 4) was proposed by
Young et al. [2], Zingg [3], Turkel and Yefet [4], based on
the Runge—Kutta time scheme, and by Hirono et al. [5], [6],
using the symplectic integrator propagator, which is basicaly
a time-integration method for Hamiltonian systems [7], [8].
However, it has been observed that these schemes of (4, 4)
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cannot increase the accuracy significantly. More importantly,
these schemes [5], [6] cannot directly extend conductors to the
perfectly matched layer (PML) boundary. In order to include
conductors in the PML boundary for the Runge—-Kutta time
scheme, the PML condition must be treated specialy [9].

In this paper, a generalized FDTD method based on the
(2M,4) scheme is presented using the discrete singular con-
volution (DSC) and symplectic integrator propagator, where
M is the bandwidth. The DSC algorithm was proposed as a
potential approach for the computer realization of singular
integrations. The theory of distribution and wavelet analysis
form the mathematical foundation for the DSC. Compared to
the multiresolution time-domain (MRTD) method [10], the
expression of arbitrary bandwidth M for spatial differential can
be obtained more easily. By choosing a suitable A, the scheme
of (2M,4) can achieve higher accuracy than the standard
FDTD method and the scheme of (4, 4) [2]. By choosing the
symplectic integrator propagator as the time-domain scheme,
the scheme (2M,4) requires much less memory than the
standard FDTD method and the scheme of (4, 4) in [2].

This paper is organized as follows. In Section Il, the DSC
method based on the Lagrange delta kernel (LK) is intro-
duced. An improved symplectic integrator propagator scheme
is proposed in Section I11. In Section 1V, using the generalized
FDTD scheme, several numerical examplesfor two-dimensional
(2-D) and three-dimensiona (3-D) guided-wave problems are
analyzed and the performance of the (244, 4) scheme is aso
discussed.

Il. SPATIAL DISCRETIZATION

A. The DSC Method

Let 7 be adistribution and f(x) be an element of the space
of test functions. The singular convolution of f(x) isdefined as

+oo
F(t) = (T f)(t) = / T(t - o) f(@)de. ()
Its DSC can be written as
Fu(t) = Zj To(t — @) f () )

where 7, is the sequence of approximationsto 7', F, is an ap-
proximation to F'(t), and {z; } is a set of discrete points.
Unlike the standard FDTD method [1], in which the center
difference for space and time differentia is used, the DSC
method [11] is used to discretize the spatia difference. When
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the standard Yee's cell isused, the nth-order spatial differentia-
tion of the electromagnetic field function f by the DSC method
can be shown as follows:

-1
ROERY 55;2(97 = Trq1/2) f(Trgr/2)
k=—M
M
+ Z 55:&(35 - xk—l/?)f(xk—l/Q) (3

k=1

wheres" (z—zy,) = (d/dz)" 85,a(z—21), 65,a(z—a2) isthe
DSC deltakernel, and M isthe bandwidth. Thereare many delta
kernels, such as Shannon’ s deltakernel, the LK, and Posisson’'s
deltakernel. In this paper, only the LK is considered. Compared
with other delta kernels, the LK needs less bandwidth for the
same accuracy.

It iswell known that the LK is given as

MM
Ly () = H a: 4
imk— M ik TR TN

T — s (mmmp)?
Z]e =% . (5)

The LK of order n and bandwidth A/ can be computed by a
recurrence method [12].

For n = 1, using the Taylor’s expansion and considering the
characteristic of the Lagrange polynomial (4), the error term
Ry of the LK (4) can be derived as

)

As the DSC kernels are either symmetric or antisymmetric,
they require approximating the function values outside the
computational domain. Therefore, the following boundary con-
ditions can be used.

For a perfect electric wall, the tangential electric field £; and
the normal magnetic field H,, outside the computational do-
main are obtained by antisymmetric extensions, whereas, for the
normal electric field £,, and the tangential magnetic field H:,
symmetric extensions are used.

For a perfect magnetic wall, the tangential magnetic field H;
and the normal electric field £,, outside the computationa do-
main are obtained by antisymmetric extensions, whereas, for the
normal magnetic field H,, and the tangential electric field £},
symmetric extensions are used.

For a periodic boundary, all electric and magnetic fields
outside the computational domain are obtained by periodic
extensions.

For an open boundary, the PML condition can be used to de-
termine field values outside the computational domain.

[(2M — )12

(2M +1)! ©

RLK X

B. Boundary Conditions

I1l. IMPROVED PML CONDITION WITH PADE APPROXIMATION

In this paper, the PML condition based on the symplectic in-
tegrator propagator [5], [6] is introduced to truncate the open
boundary. However, it is found that the PML condition based
on the symplectic integrator propagator in [5] and [6] cannot be
used to truncate unlimited conductor boundary directly.

In [5] and [6], a 3-D fourth-order FDTD scheme using a
symplectic integrator propagator was proposed. Its basic idea
is briefly reviewed here for clarity.

Maxwell’ s equationsin an isotropic and source-free medium
are written in amatrix form as

ORI

where
W= <_’i__11‘;]3 :E*il;?g) —U+V (8
=33 2)
VI%(?{ —2@,)' ©

The solution after atime step A, is expressed by the expo-
nential operator exp(A,W) as

(5) @ =estam (%) o

where exp(A, W) isapproximated by the symplectic integrator
propagator, which is the multiproduct of the exponential oper-
ator of I/ and of V. The propagator approximates exp(A; W)
as

(10)

exp(A W) = [ ] exp(dpAiV) exp(epAl)) + O((A0)" )
p=1

(11)

where ¢, and d,, are real coefficients characterizing the propa-
gator [5], [6], n isthe order of the approximation, and m isthe
stage number of the propagator

A, o* 1—exp| — :a*
(el
3

(12)

I 0
eXp(AtV) = < 13—eXP(—At<7/€)R iXI}) (_M) Ig) . (13)

g £

In[5] and[6], thefollowing exponential functionsare approx-
imated by Padé s approximation of (2, 2):

o l—w/2+w?/12
T w/2+ w?/12
1—exp(—w) _1—w/104+w?/60

w T 1+ 2w/5 + w?/20

exp(—w)

wherew = Ao /e or w = Ayo™ /.
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In this paper, the quadratic profile of conductivity o(p) =
om(p/6)™ [13], [14] is chosen. So, the reflection factor for a
PML of thickness 6 is

05(9))

where ¢ isthe dielectric constant, ¢ is the vacuum velocity, and
f is the angle of incidence. By choosing 8 = 0°, &, can be
obtained from (16) as

2 omdb
¢
n+1 ec

R(8) = exp <_ (16)

(n+1)ecln R,

25 a7

Om = —

When the spatial increment Ah andthetimeincrement At are

chosen, the conductivities at the mesh points are implemented

as the average value in the cell around the index location. At
index I, we have

1 I-Ah+AR/2
O—(l) = —/ Om (8)
Ah l-Ah—Ah/2 6

b0 1 1405\ /1-05\""
N N N
6-o0pm 1
- - fa 18
& a1 T (18)

where 6 = N - Ah.
In order to satisfy the stability condition, we choose the time
increment as

AR

Af = =%
! g-c

(19
where 3 is usually greater than 1 for most planar circuit prob-
lems. If Ah isthe minimum space increment in (19), then 3 >
v/2M for 2-D propagation problems and 3 > +/3M for 3-D
propagation problems,

From (17)—(19), we can obtain

a(l)- At In(R.,)
€ - 273

ln(R,,)
23

i< (20)

where the condition /e = o*/; was invoked for low-loss
media. It is seen from (20) that (o/e)At is smaler than
—In(R,,)/2. Normaly, when 107 < R,, < 107° for
most microstrip circuit problems, (o/e)A¢ is smaler than
12 for lossless and low-loss dielectric media. However, in
good conductor and high-loss media (o >>» we), the value of
(o/e)At can be very big.

Fig. 1 shows the comparison between the right-hand side of
(14) and exp(—w). It is obvious that, when w is smal, the
right-hand side of (14) is a good approximation to exp(—w)
However, when w is large, the right-hand side of (14) can not
approximate exp(—w) well.

Fig. 2 shows the comparison between the right-hand side of
(15) and (1 — exp(—w))/w. It is seen that, when w is small,
the right-hand side of (15) is a good approximation to (1 —
exp(—w))/w. Similarly, when w is large, the right-hand side
of (15) cannot approximate (1 — exp(—w))/w well.
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Fig. 2. Comparison between two kinds of approximation for [1 —
exp(—w)]/w.

Becauseo >> we for agood conductor, (o /e)At isvery large.
Therefore, inthe FDTD, (14) and (15) cannot be used for acon-
ductor and extend an unlimited conductor to the PML condition,
such asin 3-D microstrip problems. Here, improved approxima-
tions are presented according to Padé' s approximation of (0, 2)

1
exp(—w) X T A (21)
1 — exp(—w) - 1 22)
w 14+w/2+w?/12°

From Fig. 1, it is seen that, when w issmall, (21) can give an
acceptable approximation to exp(—w). However, when w in-
creases, (21) givesabetter approximation to exp(—w) than (14)
does. The similar comparison between (15) and (22) is shown
in Fig. 2. In the entire range, (22) has a better approximation to
(1 — exp(—w))/w than (16).

Combining (3), (12), (13), (21), and (22) with (11), the
scheme of the (2M,4) FDTD method can be constructed. If
M = 2 and the PML scheme uses (14) and (15), the (2M, 4)
scheme reduces to the fourth-order FDTD scheme using a
symplectic integrator propagator [5], [6]. If M = 1 and the
central difference for the first-order time differentiation is used,
it becomes the standard FDTD method.
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Fig. 4. Geometry of arectangular waveguide partially loaded with adielectric
Fig. 3. Variation of the maximum error for different bandwidths for At = slab.
0.0001/¢q.
TABLE Il
TABLE | COMPARISON OF CUTOFF FREQUENCY RESULTS (GIGAHERTZ) FROM
MAXIMUM ERROR AND CPU TIME FOR DIFFERENT MESHES DIFFERENT SCHEMES OF THE FDTD METHOD
IN EVERY DIRECTION BY THE STANDARD FDTD METHOD
Analytical R, of scheme R, of scheme Standard
Meshes Maximum error (dB CPU time (s 2
> 1500 (dB) e () result (14) and (15) (1) and (22) FDTD
MR 2 (GHz) B B (dB)
50 -23.861 499 (dB) (dB)
100 -37.162 1966 16.0218 -63.507 63507 57325
19.7099 -65.553 -67.503 -55.037
TABLE I 21.6386 61267 61267 -52.536
MAXIMUM ERROR AND CPU TIME FOR DIFFERENT MESHES IN EVERY 247317 -64.519 -64.519 -47.302
DIRECTION AND DIFFERENT BANDWIDTHS BY THE (2, 4) SCHEME 78.6893 63354 53354 44842
Mecshes | Bandwidth Maximum crror CPU time 32.2307 -57.888 -57.888 -43.031
(M) (dB) (s) 34.4280 55.175 -55.175 -44.605
5 2 -11.652 28 37.7809 64.697 63977 39379
I - 3 36,436 32 41,7636 44344 44344 38551
S 4 -60.130 39 ' A s s
5 3 _83.154 44 47.9226 -56.5 -56.746 -39.675
10 2 -34.661 87 51.0020 60401 -60.069 -34.929
10 3 -71.375 103
10 4 -106.933 124
10 5 -141.807 137
25 1 -11.497 675
50 1 -23.479 856
50 6 -214.742 3456
IV. EXAMPLES
To illustrate the application of the proposed (20, 4) scheme i
to electromagnetic wave problems, a 2-D air-filled rectangular ‘
waveguide isfirst considered. The waveguide length and width |
are both 0.01 m and the cross section is discretized by 51 x 51 é
grid points. M is chosen from 1to 30, and f = 23.9769 GHz. b o 4
For every fixed M, the DSC parameters { 65712} can be obtained I S e
by therecurrence method starting from A4/ = 1. Inorder toelim- I Ty L-W—J s AL
inate the error introduced by the time increment, At is chosen | & o &=8875 Q.Q\q/
to be very small (0.00001 /c). Fig. 3 shows the maximum error N A R 4 Microstip
between analytical results and numerical results for different =0.0127m line

values of M. The maximum error is defined as
Fig. 5. Geometry of ashielded microstrip line, whered = w = 0.00127 m.
Jnax, Ifnv — fal(z,v)
’ It isseen that when M variesfrom 1 to 4, the maximum error
where fy isthe numerical field value, f4 istheanalytical field will decrease about 65 dB for every increment of A4 . Thisresult

value, and €2 is the interior domain. is in agreement with (6). Therefore, we can choose a suitable
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Fig. 6. Comparison of time-domain electric field results at node (5,5,5) between: (a) the scheme of (14) and (15) and (b) the scheme of (21) and (22).

M from (6) according to the required accuracy. However, when
M isbigger than 4, the maximum error almost keeps constant.
In the examples that follow, M = 6 is used to obtain a higher
accuracy.

Tables| and |l compare the maximum error (for t = 1 s) and
CPU time between the (20, 4) scheme and the standard FDTD
method. If using the same mesh in every direction, the (2A4, 4)
scheme needs more CPU time than the standard FDTD for any
bandwidth M. Itisseen from Tablell that, for the same meshes,
the (2M, 4) scheme can achieve ahigher accuracy with aslight
increasein CPU time by increasing the bandwidth A/ . However,
If choosing much smaller meshes (1/3—1/10) in every direction
and alarger bandwidth M > 2, the (2M, 4) scheme can obtain
a higher accuracy with less CPU time.

The second example is a rectangular waveguide partially
loaded with a slab of dielectric material [15], as shown in
Fig. 4. This problem is selected to verify that the improved
scheme of (21) and (22) has the same accuracy as that of (14)
and (15) for lossless dielectric media. Meshes are chosen to be
N, =50, N, = N, = 25, and At = 0.0001/co. Two PML
conditions are added in the z direction to terminate the
computational domain. R(0) is 10~¢, N = 10, and the factor
n in the conductivity relation (17) is 3. Table 11l shows the
comparative results of the cutoff frequencies from the
standard FDTD method, the scheme of (14) and (15),
and the scheme of (21) and (22). From the table, it is
seen that the scheme of (21) and (22) produces the same
results as the scheme of (14) and (15). For every TM
mode, the DSC method has very lower relative errors
R.(20log(|analytical result-numerical result| /analytical result))
than the standard FDTD method, and the difference between
them is from 6 to 25 dB.

The determination of mode cutoff frequencies based on the
time-domain DSC method and theimproved PML isgeneralized
to a shielded microstrip line, as shown in Fig. 5. This problem
is dightly more complicated than the previous two examples
and it does not have an exact solution. The strip lineis assumed
to be a good conductor with parameterse,. = 1, p. = 1, and
o = 2. % 10° S/m.

TABLE 1V
COMPARISON OF CUTOFF FREQUENCY RESULTS (GIGAHERTZ) BETWEEN OUR
RESULTS AND THOSE OBTAINED BY HFSS

Results of (2M, 4) scheme HFSS Results
16.93875 16.8977
22.56698 22.7337
23.46411 23.5520
27.70574 27.6291
29.33492 29.3668

The interior region of the square cross section is discretized
into many small squarecells v, = N, = N, = 51 andthetime
increment is At = 0.0001 /co. In order to excite every possible
mode in the cavity-type structure, the following electric field
distribution is used [15] in the transverse face:

(37—%)24‘(2/—%)2
272

E. =exp {— } , forz > z. (23)

where (x., y., z.) is the center node of interior domain.

Fig. 6 shows the comparison of the scheme (21) and (22)
with the scheme (14) and (15). It is obvious that the solution
of the scheme of (14) and (15) diverges after 1600 time steps.
However, the solution of the scheme of (21) and (22) is very
stablein all calculated time steps. Therefore, it can be concluded
that the scheme (21) and (22) can deal with conductor problems
very well.

Table 1V shows the comparison of the cutoff frequencies cal-
culated by the DSC method based on an improved symplectic
scheme and those obtained by Ansoft’ s High-Frequency Struc-
ture Simulator (HFSS). It is seen that they are in good agree-
ment. Therefore, the improved symplectic scheme can be used
to extend conductors to the PML boundary directly without any
modification.
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V. CONCLUSION

In this paper, a generalized time-domain higher order
finite-difference method, based on the LK of DSC (TD-DSC)
algorithm, and amodified PML absorbing boundary condition,
is introduced to analyze 3-D guided-wave problems. The
presented scheme has the same flexibility as the standard
FDTD method in handling homogeneous and inhomogeneous
microwave problems. Its accuracy can be much higher than
the standard FDTD method by choosing a suitable bandwidth.
The higher order Langrage scheme can achieve a satisfactory
accuracy with three to six points per wavelength, whereas
the standard FDTD scheme usually requires 12—18 points per
wavelength. Dueto its high accuracy, the higher order Langrage
method is more efficient than the standard FDTD method for a
given simulation, though this scheme requires alonger compu-
tational time than the standard FDTD method over agiven grid.
Based on the symplectic integrator propagator and itsimproved
approximation, the higher order Langrage method requires not
only less memory than the standard FDTD method and the
scheme of (4, 4), but the PML condition can also be extended to
directly truncate microstrip lines. Therefore, the combination
of the higher order Langrage scheme and the modified PML
absorbing boundary condition provides improvements in
memory saving and achieving higher accuracy.
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